新葡京娱乐场网站-澳门葡京娱乐_澳门百家乐论坛_新全讯网3344555 (中国)·官方网站

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

大发888好么| 百家乐傻瓜式投注法| 百家乐官网真钱斗地主| 澳门百家乐官网现场游戏| 百家乐官网凯时娱乐网| 百家乐赌博信息| 大发888真钱电玩游戏| 万人迷百家乐官网的玩法技巧和规则 | 威尼斯人娱乐赌博| 海安县| 百家乐孖宝揽| 百家乐官网大眼仔路| 百家乐技巧娱乐博彩| 百家乐官网娱乐城会员| 威尼斯人娱乐平台注册| 百家乐游戏规则介绍| 百家乐官网出千技巧| 百家乐最好的投注方法| 百家乐官网园云鼎娱乐网| 益阳市| 广东百家乐桌布| 百家乐官网看炉子的方法| 试玩区百家乐官网1000| 百家乐官网娱乐下载| 新葡京百家乐的玩法技巧和规则| 苹果百家乐官网的玩法技巧和规则 | 百家乐官网庄闲概率| 网上百家乐的打法| 百家乐官网荷官培训| 百家乐官网分析网| 单机百家乐游戏下| 犹太人百家乐官网的玩法技巧和规则 | 亲朋棋牌官方下载| 大发888真钱娱乐城下载| 百家乐第三张规则| 百家乐官方游戏下载| 缅甸百家乐官网网站| 至尊百家乐facebook| 百家乐网上投注网站| 百家乐官网对付抽水| 线上百家乐官网平台|