新葡京娱乐场网站-澳门葡京娱乐_澳门百家乐论坛_新全讯网3344555 (中国)·官方网站

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

百家乐建材| bet365在线体育投注| G3百家乐的玩法技巧和规则| 百家乐官网娱乐求解答| 百家乐电脑游戏机投注法实例| 百家乐官网单跳投注法| 3d棋牌游戏| 澳门百家乐论坛| 赌场百家乐视频| 免费玩百家乐官网的玩法技巧和规则| 百家乐官网技巧大全| 现金赌博网| 博彩网百家乐全讯网| 找查百家乐玩法技巧| 百家乐是骗人的么| 百家乐盈利分析路单| 百家乐官网打印机分析| 开心8娱乐城| 清镇市| 澳门盘口| 棋牌室名字| 百家乐官网看牌技巧| 百家乐官网三路秘诀| 网络百家乐官网软件真假| 塑料百家乐官网筹码| 闲和庄百家乐官网娱乐平台| 英皇百家乐官网的玩法技巧和规则| 百家乐官网必赢法冯耘| 百家乐官网高级技巧| 大发888注册娱乐账号| 赌博投注| 百家乐官网视频中国象棋| 百家乐官网直揽经验| 利高百家乐娱乐城| 免费百家乐官网预测工具| 百家乐发牌盒子| 大发888是什么东| 仁化县| HG百家乐官网大转轮| 百家乐桌德州扑克桌| 百家乐存200送200|